Mechanical behavior of regular open-cell porous biomaterials made of diamond lattice unit cells.

نویسندگان

  • S M Ahmadi
  • G Campoli
  • S Amin Yavari
  • B Sajadi
  • R Wauthle
  • J Schrooten
  • H Weinans
  • A A Zadpoor
چکیده

Cellular structures with highly controlled micro-architectures are promising materials for orthopedic applications that require bone-substituting biomaterials or implants. The availability of additive manufacturing techniques has enabled manufacturing of biomaterials made of one or multiple types of unit cells. The diamond lattice unit cell is one of the relatively new types of unit cells that are used in manufacturing of regular porous biomaterials. As opposed to many other types of unit cells, there is currently no analytical solution that could be used for prediction of the mechanical properties of cellular structures made of the diamond lattice unit cells. In this paper, we present new analytical solutions and closed-form relationships for predicting the elastic modulus, Poisson׳s ratio, critical buckling load, and yield (plateau) stress of cellular structures made of the diamond lattice unit cell. The mechanical properties predicted using the analytical solutions are compared with those obtained using finite element models. A number of solid and porous titanium (Ti6Al4V) specimens were manufactured using selective laser melting. A series of experiments were then performed to determine the mechanical properties of the matrix material and cellular structures. The experimentally measured mechanical properties were compared with those obtained using analytical solutions and finite element (FE) models. It has been shown that, for small apparent density values, the mechanical properties obtained using analytical and numerical solutions are in agreement with each other and with experimental observations. The properties estimated using an analytical solution based on the Euler-Bernoulli theory markedly deviated from experimental results for large apparent density values. The mechanical properties estimated using FE models and another analytical solution based on the Timoshenko beam theory better matched the experimental observations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Additively Manufactured Open-Cell Porous Biomaterials Made from Six Different Space-Filling Unit Cells: The Mechanical and Morphological Properties

It is known that the mechanical properties of bone-mimicking porous biomaterials are a function of the morphological properties of the porous structure, including the configuration and size of the repeating unit cell from which they are made. However, the literature on this topic is limited, primarily because of the challenge in fabricating porous biomaterials with arbitrarily complex morpholog...

متن کامل

Analytical relationships for prediction of the mechanical properties of additively manufactured porous biomaterials

Recent developments in additive manufacturing techniques have motivated an increasing number of researchers to study regular porous biomaterials that are based on repeating unit cells. The physical and mechanical properties of such porous biomaterials have therefore received increasing attention during recent years. One of the areas that have revived is analytical study of the mechanical behavi...

متن کامل

Parameter Study of GTN Model in a SLM Manufactured Lattice Structure under Compression by Using FEM

This study investigates the effect of material parameters of the Gurson-Tvergaard-Needleman (GTN) model on the failure prediction of cellular structures. The effect of elastic modulus, calibration parameter of GTN model, isotropic hardening, fracture strain, and strut diameter on the load-displacement curve of a lattice structure fabricated by Selective Laser Melting (SLM) has been studied by u...

متن کامل

Anisotropy in Elastic Properties of Porous 316L Stainless Steel Due to the Shape and Regular Cell Distribution

In this study, two-dimensional finite element modeling was used to study the simultaneous effect of the cell shape and regular cell distribution on the anisotropy of the elastic properties of 316L stainless steel foam. In this way, the uniaxial compressive stress-strain curve was predicted using a geometric model and fully solid 316L stainless steel. The results showed that the elastic tangent ...

متن کامل

Lattice Boltzmann modeling of two component gas diffusion in solid oxide fuel cell

In recent years, the need for high efficiency and low emission power generation systems has made much attention to the use of fuel cell technology. The solid oxide fuel cells due to their high operating temperature (800 ℃ -1000 ℃) are suitable for power generation systems.Two-component gas flow (H2 and H2O) in the porous media of solid oxide fuel cell’s anode have been modeled via lattice Boltz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the mechanical behavior of biomedical materials

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2014